Mathematics Tutorial Series

Integral Calculus \#19

Integrals and Area-2

Sometimes we want the area of a region bounded by two curves.

1. Find the intersections.
2. Work out which function is on top.
3. Use a new integral for each interval.

Area $=$

$$
\int_{a}^{b} T O P-B O T T O M d x
$$

Here is a question from a recent first year examination.

Calculate the area bounded by $f(x)=x^{2}-4$ and $g(x)=-x^{2}+4$.

These are quadratic polynomials so they graph as parabolas - one opening up and the other opening down.

1. Where do they intersect?

Let $f(x)=g(x)$ so $x^{2}-4=-x^{2}+4$.
Then $2 x^{2}=8, x^{2}=4$ and $x= \pm 2$.
2. Which is on top?

Area $=$

$$
\begin{gathered}
\int_{a}^{b} \text { TOP - BOTTOM } d x \\
\int_{-2}^{+2}\left(-x^{2}+4\right)-\left(x^{2}-4\right) d x \\
\left.=\int_{-2}^{+2} 8-2 x^{2} d x=8 x-\frac{2}{3} x^{3}\right]_{-2}^{+2} \\
=16-\frac{2}{3} 8-(-16)+\left(-\frac{2}{3} 8\right)=\frac{2}{3}(32)=\frac{64}{3}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Area }= \\
& \qquad \int_{a}^{b} f(x)-g(x) d x+\int_{b}^{c} g(x)-f(x) d x
\end{aligned}
$$

$$
\begin{array}{ll}
\hline \text { Area }= \\
& \int_{a}^{b} T O P-\text { BOTTOM } d x
\end{array}
$$

